Origin and evolution of HIV-1 in breast milk determined by single-genome amplification and sequencing.
نویسندگان
چکیده
HIV transmission via breastfeeding accounts for a considerable proportion of infant HIV acquisition. However, the origin and evolution of the virus population in breast milk, the likely reservoir of transmitted virus variants, are not well characterized. In this study, HIV envelope (env) genes were sequenced from virus variants amplified by single-genome amplification from plasmas and milk of 12 chronically HIV-infected, lactating Malawian women. Maximum likelihood trees and statistical tests of compartmentalization revealed interspersion of plasma and milk HIV env sequences in the majority of subjects, indicating limited or no compartmentalization of milk virus variants. However, phylogenetic tree analysis further revealed monotypic virus variants that were significantly more frequent in milk (median proportion of identical viruses, 29.5%; range, 0 to 61%) than in plasma (median proportion of identical viruses, 0%; range, 0 to 26%) (P = 0.002), suggesting local virus replication in the breast milk compartment. Moreover, clonally amplified virus env genes in milk produced functional virus Envs that were all CCR5 tropic. Milk and plasma virus Envs had similar predicted phenotypes and neutralization sensitivities to broadly neutralizing antibodies in both transmitting and nontransmitting mothers. Finally, phylogenetic comparison of longitudinal milk and plasma virus env sequences revealed synchronous virus evolution and new clonal amplification of evolved virus env genes in milk. The limited compartmentalization and the clonal amplification of evolving, functional viruses in milk indicate continual seeding of the mammary gland by blood virus variants, followed by transient local replication of these variants in the breast milk compartment.
منابع مشابه
DNA Polymorphisms at Candidate Gene Loci and Their Relation with Milk Production Traits in Murrah Buffalo (Bubalus bubalis)
DNA polymorphism within diacylglycerol transferase 2 (DGAT2) / monoacyl glycerol transferases 2 (MOGAT2), leptin and butyrophilin genes were analysed using PCR-SSCP in Murrah buffalo. The single strand conformation polymorphism (SSCP) analysis of amplified gene fragment in exon 5 of MOGAT2, exon 3 of leptin and intron 1 of butyrophilin gene revealed different patterns. A, B and C showed the fol...
متن کاملI-38: Chromosome Instability in The Cleavage Stage Embryo
Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...
متن کاملTracking the culprit: HIV-1 evolution and immune selection revealed by single-genome amplification
Early control of HIV-1 infection is determined by a balance between the host immune response and the ability of the virus to escape this response. Studies using single-genome amplification now reveal new details about the kinetics and specificity of the CD8(+) T cell response and the evolution of the virus during early HIV infection.
متن کاملO-44: Characterisation of Monotreme CaseinsReveals Lineage Specific Expansion of an AncestralCasein Locus in Mammals
Background: One important reproductive characteristic of Mammals is the production of milk to nurse the neonate. In order to better understand the evolution of milk we have investigated gene expression in milk cells from monotremes which are the most ancient representative of the mammalian lineage. Materials and Methods: Using a milk cell cDNA sequencing approach we characterise milk protein se...
متن کاملO-36: Genome Haplotyping and Detection of Meiotic Homologous Recombination Sites in Single Cells, A Generic Method for Preimplantation Genetic Diagnosis
Background: Haplotyping is invaluable not only to identify genetic variants underlying a disease or trait, but also to study evolution and population history as well as meiotic and mitotic recombination processes. Current genome-wide haplotyping methods rely on genomic DNA that is extracted from a large number of cells. Thus far random allele drop out and preferential amplification artifacts of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of virology
دوره 85 6 شماره
صفحات -
تاریخ انتشار 2011